Abstract

Surface coating of metallic materials using the sol-gel technique is a suitable approach to obtain hybrid materials with improved properties for biomedical applications. In this study, an AISI 316L stainless steel surface was coated with ormosils prepared from tetraethylsiloxane and 3-glycidoxypropyltrimethoxysilane or polydimethylsiloxane. The characterization of structural and surface properties was performed by several techniques. Surface microstructure, morphology, and energy are dependent on organosilane type and content. Chemical stability of coatings was investigated by static immersion tests in phosphate buffer solution at 37 °C, and silicon leaching after 21 days was found to be in the range of ∼200−300 μg L−1. Mechanical adhesion was found to be within 1.0 and 3.7 N cm−1. The interaction of the samples and materials in the cardiovascular environment was investigated through cellular behavior. Biological assays were performed with slides to avoid any cytotoxic effects on human endothelial cells (HUVEC) and rabbit arterial smooth muscle cells (RASM). No significant alterations were observed after 24 h in the viability of RASM and HUVEC cells exposed to different coatings. No increase of HUVEC or RASM migration was observed after 24 h as evaluated by transwell migration assay. The hybrid materials showed suitable properties for potential application as biomaterials in cardiovascular environment as well as for incorporation of bioactive species with the aim to prepare drug-eluting stents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.