Abstract
The drilling of State-of-the-Art printed circuit boards (PCBs) often leads to shortened tool lifetime and low drilling accuracy due to improved strength of the PCB composites with nanofillers and higher thickness-to-hole diameter ratio. Diamond coatings have been employed to improve the tool lifetime and drilling accuracy, but the coated microdrills are brittle and suffer from coating delamination. To date, it is still difficult to deposit diamonds on ultrathin microdrills with diameters lower than 0.2 mm. To avoid tool failure, the pretreatment was optimized to afford sufficient fracture strength and enough removal of cobalt. Further, the adhesion of the diamond coating was improved by employing an interlayer comprising SiC/microcrystalline diamond, which mitigates stress accumulation at the interface. By these means, microdrills with diameters of 0.8 and 0.125 mm were coated with adherent diamonds. In this context, the composite coating with the diamond/SiC interlayer and a nanodiamond top layer featured enhanced adhesion compared to single nano- or microdiamond coatings on the WC-Co microdrills. The composite diamond-coated WC-Co microdrills featured improved wear resistance, resistance to delamination of the diamond coating, and improved performance for drilling PCBs compared to micro- and nanodiamond-coated microdrills without interlayer. In addition, a higher hole quality was achieved when the diamond-coated microdrills were used. These results signify that the composite/nanodiamond coating features the highest bonding strength and best drilling performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.