Abstract

AbstractThe dispersion and deposition of radio‐cesium (137Cs) carried by two types (type A and type B) of water‐insoluble Cs‐bearing solid microparticles (CsMPs) released due to the Fukushima nuclear accident were simulated for the first time. The presence of type B CsMPs (70–400 μm found in soil and 1–5 μm found in air), associated with the hydrogen explosion of Unit 1 in the afternoon of March 12, could partly explain the simulated underestimation of total deposition over land by assuming that 100% of the Cs carriers were water‐soluble submicron particles (WSPs). Type A CsMPs (0.1–10 μm), released from Units 2 or 3 in the midnight between March 14 and 15, traveled over the Kanto Plain, the most populated plain in Japan. Differences in the size distribution of type A CsMPs altered the surface air concentration over Kanto substantially, by up to more than one order of magnitude. The major deposition mechanisms varied among dry, wet, and fog (and/or cloud) depositions depending on the size distribution and locations. The simulated activity fractions due to the CsMPs in the total deposition were compared to those observed in surface soil for the first time. The observations could be explained by the simulations for the locations under the influence of type B CsMPs. However, the simulations were substantially underestimated for the locations influenced by type A CsMPs. There could be more fractions of type A CsMPs emission in the source term and/or the simulated deposition rates of type A CsMPs were underestimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.