Abstract

Temozolomide (TMZ)-based chemotherapy is a standard strategy for gliomas, although chemoresistance remains a major therapeutic challenge. The chemical mechanism by which TMZ induces cell death is DNA methylation, leading to double-stranded breaks (DSBs) and thus to apoptosis. However, TMZ-induced N6-meG sites are efficiently repaired and mediated by the DNA repair protein O6-methylguanine-DNA methyl-transferase (MGMT), leading to TMZ resistance. KLF15, a member of the Kruppel-like factors family, mainly functions as transcription factor and potential suppressor gene by inhibiting proliferation, migration, and inducing apoptosis. However, the roles and regulatory mechanisms of KLF15 in glioma tumorigenesis and chemoresistance are poorly understood. In this study, KLF15 expression was upregulated in glioma tissues and cell lines upon TMZ treatment. Knockdown of KLF15 amplified TMZ-induced repression of cell proliferation, while KLF15 overexpression reversed this process. Mechanistically, KLF15 functioned as a transcriptional activator of MGMT. Moreover, KLF15 knockdown sensitized tumors to TMZ treatment in vivo. Taken together, these results suggested that KLF15 up-regulated MGMT through direct binding to the promoter of MGMT, which plays an important role in glioma resistance to TMZ, and which may be a potential target for cancer diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.