Abstract

Depletion effects are well known to lead to phase separation in microsystems consisting of large and small particles with short-range repulsive interactions that act over macromolecular length scales. The equilibrium mechanics between an enveloped colloidal particle and a biomembrane caused by entropy is investigated by using a continuum model. We show that the favorable contact energy stems from entropy, which is sufficient to drive engulfment of the colloidal particle, and deformation of the biomembrane determines the resistance to the engulfment of the colloidal particle. The engulfment process depends on the ratio of the radii of the larger particle and smaller particles and the bending rigidity. The results show insights into the effects of depletion on biomembrane budding and nanoparticle transportation by a vesicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.