Abstract
Conceptual analysis is performed to examine the effects of pore features on the water continuity in unsaturated porous systems. The roles of pore features in relative chloride diffusion coefficient (Drc) of mortar specimens at various degrees of water saturation (Sw) were studied based on mercury intrusion porosimetry and resistivity tests. It is found that the role of pore structure in the Drc-Sw relationship is a result of its effect on the water continuity. Porosity and tortuosity are not relevant to the Drc-Sw relationship. A finer pore size distribution or lower pore connectivity tends to result in a lower Drc. The pore size effect on the Drc is pronounced primarily at high Sw, while the Drc is dominated by the pore connectivity at low Sw. Cement mortar with a higher water-to-binder ratio shows larger chloride diffusion at high relative humidity levels but smaller chloride diffusion at low relative humidity levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.