Abstract

This paper describes the results of transmission electron microscopic, scanning electron microscopic and/or Rutherford backscattering spectroscopic analyses of platinum electrocatalysts supported on carbon, and of low catalyst loading gas-diffusion electrodes used in proton-exchange-membrane (PEM) fuel cells. We looked for correlations between the performance of PEM fuel cells and the morphology of low-catalyst-loading electrodes, taking into account the thickness of the catalyst layers, the crystallite sizes of the platinum electrocatalyst supported on carbon and the increased Pt catalyst content near the front of the electrodes. We reached the conclusion that the use of electrodes with thin catalyst layers (made by using platinum on carbon electrocatalysts with a high Pt/C weight ratio) and with more platinum localized near the front surface had the effect of diminishing the overpotentials in PEM fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.