Abstract

Deoxyribonucleoside triphosphate (dNTP) pool imbalances are associated with an increase in the rate of misincorporation and hypermutation during in vitro reverse transcription reactions. However, the effects of in vivo dNTP pool imbalances on the accuracy of reverse transcription are unknown. We sought to determine the effects of in vivo dNTP pool imbalances on retroviral mutation rates and to test our hypothesis that 3'-azido-3'-deoxythymidine (AZT) increases the retroviral mutation rates through induction of dNTP pool imbalances. D17 cells were treated with thymidine, hydroxyurea (HU), or AZT, and the effects on in vivo dNTP pools were measured. Thymidine and HU treatments induced significant dNTP pool imbalances. In contrast, AZT treatment had very little effect on the dNTP pools. The effects of in vivo dNTP pool imbalances induced by thymidine and HU treatments on the retroviral mutation rates were also determined. Spleen necrosis virus (SNV)-based and murine leukemia virus (MLV)-based retroviral vectors that expressed the lacZ mutant reporter gene were used. The frequencies of inactivating mutations introduced in the lacZ gene in a single replication cycle provided a measure of the retroviral mutation rates. Treatment of D17 target cells with 500 microM thymidine increased the SNV and MLV mutant frequencies 4.7- and 4-fold, respectively. Treatment of D17 target cells with 2 mM HU increased the SNV and MLV mutant frequencies 2.1- and 2.7-fold, respectively. These results demonstrate that dNTP pool imbalances are associated with an increase in the in vivo retroviral mutation rates, but AZT treatment results in an increase in the retroviral mutation rates by a mechanism not involving alterations in dNTP pools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.