Abstract

We study the single particle density of states of a one-dimensional speckle potential, which is correlated and non-Gaussian. We consider both the repulsive and the attractive cases. The system is controlled by a single dimensionless parameter determined by the mass of the particle, the correlation length and the average intensity of the field. Depending on the value of this parameter, the system exhibits different regimes, characterized by the localization properties of the eigenfunctions. We calculate the corresponding density of states using the statistical properties of the speckle potential. We find good agreement with the results of numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.