Abstract

<abstract> <p>Based on the generalized version of Newton's Shell Theorem the electric field energy density, <italic>u<sub>F</sub></italic> around two separated surface-charged spheres surrounded by electrolyte is calculated. According to the calculations when the surfaces of the charged spheres are farther from each other than four times of the Debye length the field energy density around one of the charged sphere is basically independent from the presence of the other sphere. In this case at low electrolyte ion concentration <italic>u<sub>F</sub></italic> = 0 within the spheres and outside the sphere <italic>u<sub>F</sub></italic> decreases with increasing distance from the surface of the sphere, while at high electrolyte ion concentration <italic>u<sub>F</sub></italic> fast decreases with increasing inner and outer distance from the surface of the sphere. When the charged sheres are close to each other their electric interaction affects the field energy density especially where the surfaces of the spheres are close to each other. Also to model electrophoresis analytical equations are derived for the interaction energy between and the density of electric field energy around a charged flat surface and a charged sphere surrounded by neutral electrolyte.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.