Abstract

We investigate convergence of the density matrix renormalization group (DMRG) in the thermodynamic limit for gapless systems. Although the DMRG correlations always decay exponentially in the thermodynamic limit, the correlation length at the DMRG fixed-point scales as $\xi \sim m^{1.3}$, where $m$ is the number of kept states, indicating the existence of algebraic order for the exact system. The single-particle excitation spectrum is calculated, using a Bloch-wave ansatz, and we prove that the Bloch-wave ansatz leads to the symmetry $E(k)=E(\pi -k)$ for translationally invariant half-integer spin-systems with local interactions. Finally, we provide a method to compute overlaps between ground states obtained from different DMRG calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.