Abstract
In-depth studies of algorithms for solving motion planning problems have been conducted due to the rapid popularization and development of unmanned aerial vehicles in previous decades. Among them, the classic rapidly exploring random tree (RRT) algorithm has derivative algorithms (e.g., RRT*, Q-RRT*, and F-RRT*) that focus on the optimal path cost of the initial solution. Other improved algorithms, such as RRT-connect and BG-RRT, focus on the optimal time of the initial solution. This article proposes an improved density gradient-RRT (DG-RRT) algorithm based on RRT that improves the efficiency of the guide point and reduces the time lost in the process of obtaining the initial solution through the dynamic gradient sampling strategy. Simultaneously, it reduces the path cost by reconstructing the output path. The proposed algorithm is an expansion algorithm of a random tree, and the performance of the algorithm can be further improved by combining it with other RRT optimization algorithms. DG-RRT and other algorithms are compared in different environments through simulation experiments to verify the advantages of DG-RRT. In addition, it used a set of simulation flight tests to verify the feasibility of the DG-RRT algorithm for UAV path planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.