Abstract
The structures and electronic states of graphene–water interaction systems have been investigated by means of density functional theory (DFT) method to elucidate the effects of water clusters on the electronic states of graphene chip. Solvation caused by five to eight water molecules (n = 5–8) was examined as the interaction systems. A graphene chip composed of 14 benzene rings was used as a model of finite-sized graphene (C42H16). The water clusters interact with the graphene chip with hydrogen bonds. The band gap of graphene was slightly red-shifted by the solvation and the first excitation energy was saturated around n = 5. The electronic states of graphene–water systems were discussed on the basis of theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.