Abstract

Quantum chemical calculations based on the density functional theory (DFT) have been employed to study the relationship between the structure and the antioxidant activity of four polyphenolic deoxybenzoins (DOBs) in solvents and the gas phase. The three main working mechanisms, H-atom transfer (HAT), single electron transfer–proton transfer (SET–PT) and sequential proton loss electron transfer (SPLET) have been investigated. The calculated results closely matched experimental values. The results obtained prove that for the HAT mechanism, the most efficient system possessed ortho-dihydroxy functionality. The results suggested that HAT would be the most favourable mechanism for explaining the radical-scavenging activity of polyphenolic DOBs in the gas phase, whereas the SPLET mechanism is the thermodynamically favourable pathway in polar solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.