Abstract

Analytical studies have found an enrichment of the lighter Mo isotopes in oxic marine sediments compared to seawater, with isotope fractionation factors of -1.7 to -2.0 per thousand for Delta97/95Mosediment-seawater. These data place constraints on the possible identities of dissolved and adsorbed species because the equilibrium isotope fractionation depends on the energy differences between the isotopomers of the adsorbed species, minor dissolved species, and the dominant solution species, MoO42-. Adsorption likely involves molybdic acid, whose structure is indicated by previous studies to be MoO3(H2O)3. Here we used DFT calculations of vibrational frequencies to determine the isotope fractionation factors versus MoO42-. The results indicate that isotope equilibration of MoO42- with MoO3(H2O)3, yielding Delta97/95Momolybdic acid-molybdate=-1.33 per thousand, is most likely responsible for the isotope fractionation of Mo between oxic sediments and seawater. The difference between the calculated value of Delta97/95Momolybdic acid-molybdate for MoO3(H2O)3 and the value observed in natural sediments and experiments is probably due to effects of solvation and adsorption onto the manganese oxyhydroxide surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.