Abstract
The performance of a density functional theory approach in calculating the equilibrium bond length, dipole moment, and harmonic vibrational frequency in a series of group 6 (Cr, Mo, W) transition metal-containing diatomic molecules is evaluated. Using flexible basis sets comprised of Slater type functions, a wide range of exchange-correlation functionals is investigated. Comparing with known experimental values and published results from high-level theoretical calculations, the most suitable functional form is selected. The importance of relativistic effects is checked, and predictions are made for several unknown dipole moments. The best agreement with experimental parameters is obtained when using a general gradient approximation, while special and hybrid functional forms give less accurate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.