Abstract

ZORA relativistic DFT calculations are presented which aim to model the geometric and electronic structure of the active site of NiFe hydrogenases in its EPR-active oxidized states Ni-A (unready state) and Ni-B (ready state). Starting coordinates are taken from the X-ray structure of a mutant of Desulfovibrio fructosovorans hydrogenase refined at 1.81 A resolution. Nine possible candidates for Ni-A and Ni-B are analyzed in terms of their geometric and electronic structure. Comparison of calculated geometric and magnetic resonance parameters with available experimental data indicates that both oxidized states have a micro-hydroxo bridge between the two metal centers. The different electronic structures of both forms can be explained by a modification of a terminal cysteine in Ni-B, best modeled by protonation of the sulfur atom. A possible mechanism for the activation of both oxidized forms is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.