Abstract
The dynamic structure factor of a harmonically trapped Bose gas has been calculated well above the Bose-Einstein condensation temperature by treating the gas cloud as a canonical ensemble of noninteracting classical particles. The static structure factor is found to vanish as wavenumber squared in the long-wavelength limit. We also incorporate a relaxation mechanism phenomenologically by including a stochastic friction force to study the dynamic structure factor. A significant temperature dependence of the density-fluctuation spectra is found. The Debye-Waller factor has been calculated for the trapped thermal cloud as function of wavenumber and of particle number. A substantial difference is found between clouds of small and large particle number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.