Abstract

Movement and dispersal are critical processes for almost all organisms in natural populations. Understanding their causes and consequences is therefore of high interest. While both theoretical and empirical work suggest that dispersal, more exactly emigration, is plastic and may be a function of local population density, the functional relationship between the underlying movement strategies and population density has received less attention. We here present evidence for the shape of this reaction norm and are able to differentiate between three possible cues: the relative number of individuals, the presence of metabolites (chemical cues) and resource availability. We performed microcosm experiments with the ciliate model organism Tetrahymena in order to understand the plasticity of movement strategies with respect to local density while controlling for possible confounding effects mediated by the availability of different cues. In addition, we investigated how an Allee effect can influence movement and dispersal plasticity. Our findings suggest that movement strategies in Tetrahymena are plastic and density-dependent. The observed movement reaction norm was U-shaped. This may be due to an Allee effect which led to negative density dependence at low population densities and generally positive density dependence at high population densities due to local competition. This possibly adaptive density-dependent movement strategy was likely mediated by chemical cues. Our experimental work in highly controlled conditions indicates that both environmental cues as well as inherent population dynamics must be considered to understand movement and dispersal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.