Abstract

We present the results of self-consistent calculations of the electronic shell and supershell structure for clusters having up to 6000 valence electrons. The ionic background is described in terms of a homogeneous jellium. The calculations were performed for a series of different electron densities, resembling Cs, Rb, K, Na, Li, Au, Cu, Tl, In, Ga, and Al, respectively. By analyzing the occupation of the energy levels at the Fermi energy as a function of cluster size, we show how the shell and supershell structure for a given density arises from the specific arrangement of energy levels. We investigate the electronic shells and supershells obtained for different electron densities. Using a scaling argument, we find a surprisingly simple dependence of the position of the supernodes on the electron density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.