Abstract

The influence of a lead impurity on the properties of metallic melts in the composition range that obeys Henry’s law is studied. The formation of the structural and physicochemical properties of real concentrated melts can be traced from changes in the temperature and concentration dependences of structure-sensitive properties, namely, density and surface tension. The surface properties of a solution depend on its volume properties and differ from them in enhancement effect. The lead saturation of the nickel melt is found to be accompanied by a compression effect (decrease in the melt volume), which is enhanced to a certain lead concentration. As this concentration is exceeded, the compression effect weakens because of volume separation and the appearance of an excess lead phase. As the lead content in a nickel base increases, the surface tension decreases, a second phase forms, and the melt undergoes separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.