Abstract
We study the estimation of a density and a hazard rate function based on censored data by the kernel smoothing method. Our technique is facilitated by a recent result of Lo and Singh (1986) which establishes a strong uniform approximation of the Kaplan-Meier estimator by an average of independent random variables. (Note that the approximation is carried out on the original probability space, which should be distinguished from the Hungarian embedding approach.) Pointwise strong consistency and a law of iterated logarithm are derived, as well as the mean squared error expression and asymptotic normality, which is obtain using a more traditional method, as compared with the Hajek projection employed by Tanner and Wong (1983).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.