Abstract

Calcium hydroxyapatite, Ca10(PO4)6(OH)2:HA, is the inorganic principle component of natural bones and teeth. It has been already suggested that the amount of OH ion in the crystal structure of HA is closely related to the biocompatibility. The amount of OH ion in current HA, however, has not been controlled. In order to prepare more functional HA ceramics, the amount of OH ion must be controlled. In this study, HA ceramics with different OH amount were prepared from fine HA crystals by spark plasma sintering (SPS). In order to reveal the ideal sintering conditions for preparation of transparent ceramics, densification process on SPS was investigated. The samples were pressed uniaxialy under 60 MPa, and then they were heated by SPS at 800 °C, 900 °C and 1000 °C for 10 min with the heating rate of 25 °C⋅min−1. The quantity of OH ion in HA ceramics sintered by SPS was decreased with increasing temperature of sintering. Transparent HA ceramics were prepared by SPS at 900 °C and 1000 °C. In analysis of the densification behavior during sintering of HA by SPS, dominant sintering mechanism was plastic flow of densification. Transparent ceramics should be the most suitable materials to investigate the interface between human cells and ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.