Abstract

The recent report by Fukuda et al [1] provides convincing evidence for dense gap-junction connectivity between inhibitory neurons in the cat visual cortex, each neuron making 60 +/- 12 gap-junction dendritic connections with neurons in both the same and adjoining orientation columns. These resistive connections provide a source of diffusive current to the receiving neuron, supplementing the chemical-synaptic currents generated by incoming action-potential spike activity. Fukuda et al describe how the gap junctions form a dense and homogeneous electrical coupling of interneurons, and propose that this diffusion-coupled network provides the substrate for synchronization of neuronal populations. To date, large-scale population-based mathematical models of the cortex have ignored diffusive communication between neurons. Here we augment a well-established mean-field cortical model [2] by incorporating gap-junction-mediated diffusion currents, and we investigate the implications of strong diffusive coupling. The significant result is the model prediction that the 2D cortex can spontaneously generate centimetre-scale Turing structures (spatial patterns), in which regions of high-firing activity are intermixed with regions of low-firing activity (see Fig. ​Fig.1).1). Since coupling strength decreases with increases in firing rate, these patterns are expected to exchange contrast on a slow time-scale, with low-firing patches increasing their activity at the expense of high-firing patches. These theoretical predictions are consistent with the slowly fluctuating large-scale brain-activity images detected from the BOLD (blood oxygen-level-dependent) signal [3]. Figure 1 Diffusion-induced Turing patterns in a square cortex of side 25 cm. Panel a shows the case of zero diffusion: the cortex organizes into a diffuse, cloud-like pattern, but fails to generate a Turing structure. Panels b-d show increasing inhibitory diffusion. ...

Highlights

  • Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

  • Fukuda et al describe how the gap junctions form a dense and homogeneous electrical coupling of interneurons, and propose that this diffusioncoupled network provides the substrate for synchronization of neuronal populations

  • Panel a shows the case of zero diffusion: the cortex organizes into a diffuse, cloud-like pattern, but fails to generate a Turing structure

Read more

Summary

Introduction

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . Address: 1Department of Engineering, University of Waikato, Hamilton 3240, New Zealand and 2Waikato Clinical School, University of Auckland, Hamilton 3204, New Zealand Email: D Alistair Steyn-Ross* - asr@waikato.ac.nz * Corresponding author from Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 Toronto, Canada.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.