Abstract

Parallel magnetic resonance imaging (pMRI) techniques can speed up MRI scan through a multi-channel coil array receiving signal simultaneously. Nevertheless, noise amplification and aliasing artifacts are serious in pMRI reconstructed images at high accelerations. This study presents a patch-wise denoising method for pMRI by exploiting the rank deficiency of multi-channel coil images and sparsity of artifacts. For each processed patch, similar patches are searched in spatial domain and throughout all coil elements, and arranged in appropriate matrix forms. Then, noise and aliasing artifacts are removed from the structured matrix by applying sparse and low rank matrix decomposition method. The proposed method has been validated using both phantom and in vivo brain data sets, producing encouraging results. Specifically, the method can effectively remove both noise and residual aliasing artifact from pMRI reconstructed noisy images, and produce higher peak signal noise rate (PSNR) and structural similarity index matrix (SSIM) than other state-of-the-art denoising methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.