Abstract

Click-evoked otoacoustic emissions (CEOAEs) are clinically used as an objective way to infer whether cochlear functions are normal. However, because the sound pressure level of CEOAEs is typically much lower than the background noise, it usually takes hundreds, if not thousands, of repetitions to estimate the signal with sufficient accuracy. In this paper, we propose to improve the signal-to-noise ratio (SNR) of CEOAE signals within limited measurement time by optimal shrinkage (OS) in two different settings: covariance-based optimal shrinkage (cOS) and singular value decomposition-based optimal shrinkage (sOS). By simulation, the cOS consistently enhanced the SNR by 1-2 dB from a baseline method that is based on calculating the median. In real data, however, the cOS cannot enhance the SNR over 1 dB. The sOS achieved a SNR enhancement of 2-3 dB in simulation and demonstrated capability to enhance the SNR in real recordings. In addition, the level of enhancement increases as the baseline SNR decreases. An appealing property of OS is that it produces an estimate of all single trials. This property makes it possible to investigate CEOAE dynamics across a longer period of time when the cochlear conditions are not strictly stationary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.