Abstract

The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans.

Highlights

  • With 2.5 billion people living in areas at risk for epidemic transmission, dengue has become the most important mosquitoborne viral disease affecting humans [1]

  • Since the virus is inoculated in saliva, infection of the mosquito salivary gland is an essential requirement for transmission

  • We found that Dengue virus (DENV) induced the expression of several gene transcripts whose products modulate virus replication in the salivary gland

Read more

Summary

Introduction

With 2.5 billion people living in areas at risk for epidemic transmission, dengue has become the most important mosquitoborne viral disease affecting humans [1]. Dengue virus (DENV) is a positive-strand RNA virus of the family Flaviviridae, genus Flavivirus. It exists as four closely related but antigenically distinct serotypes (DENV-1, -2, -3, and -4), all of which have Aedes aegypti mosquitoes as their primary vector, with A. albopictus as a secondary vector. Vertical transmission of the virus has been reported [2,3], mosquitoes mainly acquire DENV by feeding on the blood of an infected human. DENV first infects and replicates in the mosquito midgut epithelium. DENV can be inoculated into a human host when the mosquito acquires a blood meal, spreading the disease

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.