Abstract
The insufficient performance of current oxygen evolution reaction (OER) electrodes limits the realization of clean hydrogen production via proton exchange membrane water electrolyzers (PEMWEs). Herein, an innovative electrode design with an ultra-low Ir loading is proposed to achieve high catalytic OER performance, catalyst utilization, conductivity, and mass transfer. The microgram-scale loading of Ir on a highly roughened dendritic Au support is controlled by the number of Ir deposition pulses and, together with Ir coverage, which significantly affect the Ir electronic structure and intrinsic OER activity. Further control of the Ir electronic structure is achieved by forming Ir oxides via electrochemical and thermal oxidation to adjust the activity–stability balance. A PEMWE employing the fabricated electrode demonstrates substantially low ohmic and mass-transfer losses, especially in the higher-current-density region. As a result, superior cell performance with extremely high mass activity is achieved, significantly exceeding the mass activities of state-of-the-art Ir-based anodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.