Abstract

In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional solidification of non-axially-oriented crystals using a quantitative phase-field model. The effects of pulling velocity and crystal orientation on the morphological transition are investigated. The results indicate the orientation dependence of the symmetry-broken double dendrites. A dendrite to symmetry-broken dendrite transition is found by varying the pulling velocity at different crystal orientations and the symmetry-broken multiple dendrites emerge as a transition state for the symmetry-broken double dendrites. The state region during the transition can be well characterized through the variations of the characteristic angle and the average primary dendritic spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.