Abstract

Two series of dendrimer encapsulated Pt nanoparticles (DENPt) were created by using sixth generation poly(amidoamine) (PAMAM) dendrimers terminated with different numbers of hydroxyl groups (s-G6-OH and t-G6-OH) to mimic hydrogenases. Pt nanoparticles act as the active site to generate H2 by reducing H+, and dendrimers provide cavities to maintain the integrity of small Pt nanoparticles and prevent agglomeration. The artificial hydrogenases (t-G6-OH/Ptx and s-G6-OH/Ptx) were successfully applied to a light-induced hydrogen production system with Pt-tppa+, ethyl viologen, and TEOA as photosensitizer, electron relay, and sacrificial reagent, respectively, exhibiting excellent stability and efficient catalytic activity. No passivation effect is caused by the periphery hydroxyl groups of dendrimers. The optimal size of the Pt clusters consists of 200 Pt atoms, and the most adapted pH value is 9 to gain the highest catalytic efficiency in the applied hydrogen production system. This study provides a new strate...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.