Abstract
Scientists always look for the most accurate and relevant answer to their queries on the scholarly literature. Traditional scholarly search systems list documents instead of providing direct answers to the search queries. As data in knowledge graphs are not acquainted semantically, they are not machine-readable. Therefore, a search on scholarly knowledge graphs ends up in a full-text search, not a search in the content of scholarly literature. In this demo, we present a faceted search system that retrieves data from a scholarly knowledge graph, which can be compared and filtered to better satisfy user information needs. Our practice's novelty is that we use dynamic facets, which means facets are not fixed and will change according to the content of a comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.