Abstract
An instrument is demonstrated whereby radiographic images of a sample's electron density are compiled from the information encoded in the energy spectra of gamma rays backscattered from one side of the sample. It is assumed that access is restricted to only one surface of the object under inspection. Use of energy coding allows imaging in a fan beam rather than independent interrogation of individual volume elements. The Multiplexed Compton Scatter Tomograph instrument consists of an array of high-energy-resolution detectors and fan beam collimators. Instrument signals are converted to electron density images using a penalized weighted least squares image reconstruction algorithm coupled with a deterministic system model that includes effects of Doppler broadening. The proof-of-principle instrument is demonstrated on aluminum samples. In an 8 mm thick sample with a 4 mm void in its center, contrast recovery of 90% is achieved. In a 10 mm thick sample with a 3 mm void at the back about 85% of the contrast is recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.