Abstract

In this letter, 3.072-Tb/s (six spatial and polarization modes × 4 wavelength-division multiplexing (WDM) ×128-Gb/s 16QAM) transmission over 30 km of few-mode fiber (FMF) is demonstrated employing a photonic integrated mode coupler based on silicon-on-insulator (SoI) technology. A 2-D top coupling solution with five small vertical grating couplers is proposed for coupling between an SoI chip and an FMF, guiding LP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> and LP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> modes. Push-pull and center launch configurations for exciting LP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> and LP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> modes, respectively, through mode-profile matching are analyzed and implemented on the SoI chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.