Abstract

Accurate and low-power decoding of brain signals such as electroencephalography (EEG) is key to constructing brain-computer interface (BCI) based wearable devices. While deep learning approaches have progressed substantially in terms of decoding accuracy, their power consumption is relatively high for mobile applications. Neuromorphic hardware arises as a promising solution to tackle this problem since it can run massive spiking neural networks with energy consumption orders of magnitude lower than traditional hardware. Herein, we show the viability of directly mapping a continuous-valued convolutional neural network for motor imagery EEG classification to a spiking neural network. The converted network, able to run on the SpiNNaker neuromorphic chip, only shows a 1.91% decrease in accuracy after conversion. Thus, we take full advantage of the benefits of both deep learning accuracies and low-power neuro-inspired hardware, properties that are key for the development of wearable BCI devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.