Abstract
The electron temperature in the inner corona can be derived from spectral line intensity measurements by comparing the ratio of the measured intensities of two spectral lines to the ratio calculated from theoretical models. In a homogeneous plasma the line ratio technique can be used for any two lines if the ratio of the intensities is independent of the density. The corona, however, is far from homogeneous. Even large coronal holes present at the solar poles at solar minimum can be partly or completely obscured by emission from hotter and denser surrounding regions. In this paper we investigate the effect of these surrounding regions on coronal hole temperatures. using daily intensity measurements at 1.15 Rs of the Fe XIV 5303 A and Fe X 6374 A spectral lines carried out at the National Solar Observatory at Sacramento Peak. We show that the temperatures derived using the line ratio technique for these two spectral lines can vary by more than 0.8 x 10(exp 6) K due to the contribution from surrounding regions. This example demonstrates the inadequacy of spectral lines with widely separate peak temperatures for temperature diagnostic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.