Abstract

Double Elliptical Micro-strip Patch Antenna (DEMPA) is developed out of Double Elliptical Patch (DEP) which is a recently proposed shape of patch. The use of DEP results in higher flexibility in design of patch antenna and thus promotes antenna miniaturisation. The present work is an attempt to demonstrate the miniaturisation of radiolocation antenna through the concept of Design Flexibility (DF). In this paper, optimised neural network model for synthesis of DEMPA has been developed for radiolocation applications for which the earmarked frequency band is 8.50 GHz – 10.50 GHz. With the help of synthesis model, for an arbitrary operational frequency of 9.85 GHz, radiolocation antennas with effective patch area ranging from 142 mm2 to 66 mm2 were designed by using DEPs. In this case, the percentage reduction in effective patch area was found to be 53.52%. It shows that double elliptical patches can be employed to develop miniaturised radiolocation antennas. One prototype antenna was fabricated and tested to demonstrate the efficacy of the methodology adopted. The fabricated antenna had resonance at 10.15 GHz with a reflection coefficient of -20.73dB and bandwidth of 3.106 GHz (from 7.458 GHz to 10.564 GHz). Its Fractional Bandwidth was 34.469%. Positive and reasonably good gain was maintained over the entire working band. At resonance, the peak gain was 4.22 dB.The measured characteristics of antenna were in close agreement with the simulated results. The methodology presented in this paper can also be applied to frequency bands for other wireless applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.