Abstract

Coronavirus disease 2019 (COVID-19) is a devastating pandemic that causes disease with a variability in susceptibility and mortality based on variants of various clinical and demographic factors, including particular genes among populations. Determine associations of demographic, clinical, laboratory, and single nucleotide polymorphisms in the ACE2, TMPRSS2, TNF-α, and IFN-γ genes to the incidence of infection and mortality in COVID-19 patients. Prospective cohort study SETTINGS: Various cities in the Kurdistan Region of Iraq. This prospective cohort study compared laboratory markers (D-dimer, tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], C-reactive protein [CRP], lymphocyte and neutrophil counts) between COVID-19 patients and healthy controls. DNA was extracted from blood, and genotypes were done by Sanger sequencing. Single nucleotide polymorphisms of the ACE2, TMPRSS2, TNF-α, and IFN-γ genes and demographic characteristics and laboratory markers for predicting mortality in COVID-19. 203 (153 COVID-19 patients, 50 health control subjects). Forty-eight (31.4%) of the COVID-19 patients died. Age over 40 and comorbidities were risk factors for mortality, but the strongest associations were with serum IFN-γ, the neutrophil-to-lymphocyte ratio (NLR), and serum TNF-α. The AA genotype and A allele of TMPRSS2 rs2070788 decreased while the GA genotype and A allele of TNF-α increased susceptibility to COVID-19. Patients with the GA genotype of TNF-α rs1800629 had shorter survival times (9.9 days) than those carrying the GG genotype (18.3 days) (P<.0001 by log-rank test). The GA genotype versus the GG genotype was associated with higher levels of serum TNF-α. The GA genotype increased mortality rates by up to 3.8 fold. The survival rate for COVID-19 patients carrying the IFN-γ rs2430561 TT genotype (58.5%) was lower than in patients with the TA and AA genotypes (80.3%). The TT genotype increased the risk of death (HR=3.664, P<.0001) and was linked to high serum IFN-γ production. Olfactory dysfunction was a predictor of survival among COVID-19 patients. Age older than 40, comorbidities, the NLR and particular genotypes for and the IFN-γ and TNF-α genes were risk factors for death. Larger studies in different populations must be conducted to validate the possible role of particular SNPs as genetic markers for disease severity and mortality in COVID-19 disease. Small sample size. None.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.