Abstract
We propose an approach to modeling and estimating discrete choice demand that allows for a large number of zero sale observations, rich unobserved heterogeneity, and endogenous prices. We do so by modeling small market sizes through Poisson arrivals. Each of these arriving consumers then solves a standard discrete choice problem. We present a Bayesian IV estimation approach that addresses sampling error in product shares and scales well to rich data environments. The data requirements are traditional market-level data and measures of consumer search intensity. After presenting simulation studies, we consider an empirical application of air travel demand where product-level sales are sparse. We i¬ nd considerable variation in demand over time. Periods of peak demand feature both larger market sizes and consumers with higher willingness to pay. This amplii¬ es cyclicality. However, observed frequent price and capacity adjustments oi¬€set some of this compounding ei¬€ect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.