Abstract

Parallel robots have natural advantages for many applications thanks to their high rigidity, high accuracy, low inertia of the moving parts and lightness, etc. The goal of this study has performed motion control, the kinematical, and workspace analyses of a Delta-type parallel robot with 3 degrees of freedom (3-DOF). Delta-type parallel actual parameter values were used in the motion control and analyses. Forward and inverse kinematics analysis, as well as workspace analysis of the robot, were carried out. In addition, the motion control of the robot is actualized in Cartesian space. In order for the delta-type parallel robot to have zero oscillation and to have a robust structure against external disturbances, the Sliding Mode Control (SMC) method was preferred. As a result, the motion control, kinematics, and workspace analyses of the delta-type parallel robot were realized and examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.