Abstract
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at the system's boundaries. It has led to a number of counterintuitive phenomena and challenged our understanding of bulk-boundary correspondence in topological systems. This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other, with several representative static and periodically driven 1D models, whose topological properties are protected by different symmetries. The emerging insight is that at critical system parameters, even topologically protected edge states can be perfectly delocalized. In particular, it is discovered that this intriguing delocalization occurs if the real spectrum of the system's edge states falls on the same system's complex spectral loop obtained under the periodic boundary condition. We have also performed sample numerical simulation to show that such delocalized topological edge states can be safely reconstructed from time-evolving states. One particular application of delocalized topological edge states in assisting adiabatic edge state pumping is also computationally demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.