Abstract

In this paper, a multichannel FIR filter design based on the Time Division Multiplex (TDM) approach that incorporates one multiply and add unit, regardless of the variable coefficient length and varying channels, by associating the resource sharing doctrine is suggested. A multiplier based on approximate distributed arithmetic (DA) circuits is employed for effective resource optimization. Although no explicit multiplication was conducted in this realization, the radix-8 and radix-4 Booth algorithms are utilized in the DA framework to curtail and optimize the partial products (PPs). Furthermore, the input stream is truncated with an erratum mending unit to roughly construct the partial products. For an aggregation of PPs, an approximate Wallace tree is taken into consideration to further minimize hardware expenses. Consequently, the suggested design's latency, utilized area, and power usage are largely reduced. The Xilinx Vertex device is expedited, given the synthesis of the suggested multichannel realization with 16 taps, which is simulated using the Verilog formulary. It is observed that the filter structure with one channel produced the desired results, and the system's frequency can support up to 429 MHz with a reduced area. Utilizing TSMC 180 nm CMOS technology and the Cadence RC compiler, cell-level performance is also achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.