Abstract

As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1−/− knockout mice and analysed the Tex19.1−/− mutant phenotype. Adult Tex19.1−/− knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1−/− testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1−/− mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations.

Highlights

  • The germ cells of sexually reproducing organisms have a unique role in generating genetic diversity and transmitting genetic information from one generation to the

  • Mobile genetic elements make up around 40% of a mammalian genome, and many of these elements are derived from retroviruses that have infected germ cells, or early embryonic precursors to germ cells, and have integrated into the genome

  • We show that when Tex19.1 is deleted from mice, germ cells have problems progressing through meiosis, and sperm production is impaired

Read more

Summary

Introduction

The germ cells of sexually reproducing organisms have a unique role in generating genetic diversity and transmitting genetic information from one generation to the next. Establishment of the germline in mammals involves the induction of germ cells from pluripotent epiblast cells through the action of extra-embryonic ectoderm-derived bone morphogenetic proteins and occurs comparatively late in development, commencing around day 6.25 days post coitum (dpc) in mice [1,2,3,4]. At around 12.5 dpc 13.5 dpc the sexually dimorphic germ cells become committed to develop along either a male or a female pathway and start to initiate sex-specific differentiation [5]. Mice carrying loss-offunction mutations in these genes, such as Atm, Dmc, cH2AX, Mlh, Msh, Rec, Rad, Smc1b, Spo, Sycp, Sycp, Sycp, Syce and Tex, typically exhibit defects in chromosome synapsis in both sexes, male and female germ cells can exhibit different responses to these defects [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.