Abstract
The finding that deletion or mutation of core circadian clock genes in both mice and flies induce unexpected alterations in sleep amount, sleep architecture and the recovery response to sleep deprivation, has led to new insights into functions of the circadian system that extend beyond its role as a regulator of the timing of the sleep-wake cycle. A key transcription factor in the transcriptional/translational feedback loop of mammalian circadian genes is BMAL1/Mop3, a heterodimeric partner to CLOCK. It was previously shown that mice deficient in the BMAL1/Mop3 gene become immediately arrhythmic in constant darkness and have reduced locomotor activity levels under entrained and constant conditions. In this study, we tested the hypothesis that the mammalian BMAL1/Mop3 gene would have regulatory effects on sleep-wake patterns. In mice with targeted deletion of the BMAL1/Mop3 gene, EEG/EMG sleep-wake patterns were recorded under entrained and free-running conditions as well as following acute (6-hrs) sleep deprivation. Mice homozygous for the BMAL1/Mop3 deletion showed an attenuated rhythm of sleep and wakefulness distribution across the 24-hr period. In addition, these mice showed increases in total sleep time, sleep fragmentation and EEG delta power under baseline conditions, and an attenuated compensatory response to acute sleep deprivation. These new data strengthen the hypothesis that molecular components of the circadian system play a central role in the generation of sleep and wakefulness beyond just the timing of these behavioral vigilance states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.