Abstract

The Na(+)/H(+) exchanger regulatory factor (NHERF) family of proteins is scaffolds that orchestrate interaction of receptors and cellular proteins. Previous studies have shown that NHERF1 functions as a tumor suppressor. The goal of this study is to determine whether the loss of NHERF2 alters colorectal cancer (CRC) progress. We found that NHERF2 expression is elevated in advanced-stage CRC. Knockdown of NHERF2 decreased cancer cell proliferation in vitro and in a mouse xenograft tumor model. In addition, deletion of NHERF2 in Apc(Min/+) mice resulted in decreased tumor growth in Apc(Min/+) mice and increased lifespan. Blocking NHERF2 interaction with a small peptide designed to bind the second PDZ domain of NHERF2 attenuated cancer cell proliferation. Although NHERF2 is known to facilitate the effects of lysophosphatidic acid receptor 2 (LPA2), transcriptome analysis of xenograft tumors revealed that NHERF2-dependent genes largely differ from LPA2-regulated genes. Activation of β-catenin and ERK1/2 was mitigated in Apc(Min/+);Nherf2(-/-) adenomas. Moreover, Stat3 phosphorylation and CD24 expression levels were suppressed in Apc(Min/+);Nherf2(-/-) adenomas. Consistently, NHERF2 knockdown attenuated Stat3 activation and CD24 expression in colon cancer cells. Interestingly, CD24 was important in the maintenance of Stat3 phosphorylation, whereas NHERF2-dependent increase in CD24 expression was blocked by inhibition of Stat3, suggesting that NHERF2 regulates Stat3 phosphorylation through a positive feedback mechanism between Stat3 and CD24. In summary, this study identifies NHERF2 as a novel oncogenic protein and a potential target for cancer treatment. NHERF2 potentiates the oncogenic effects in part by regulation of Stat3 and CD24.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.