Abstract
Mechanical homeostasis emerges following normal development of the arterial wall and requires thereafter a slow balanced degradation and deposition of extracellular matrix constituents within an unchanging mechanical state. Recent findings suggest that homeostasis is compromised in arterial aging, which contributes to the structural stiffening that is characteristic of aged central arteries. Matrix metalloproteinases (MMPs) have strong proteolytic activity and play fundamental roles in matrix turnover. Here, we use Mmp12-/- mice to examine effects of a potent metalloelastase, MMP-12, on the biomechanical phenotype of the thoracic and abdominal aorta in young and naturally aged mice. A key finding is that germline deletion of the gene (Mmp12) that encodes MMP-12 alters biomechanical properties from normal more in young adult than in older adult mice. Consequently, percent changes in biomechanical properties during aortic aging are greater in wild-type than in MMP-12 deficient mice, though with similar overall decreases in elastic energy storage and distensibility and increases in calculated pulse wave velocity. Reduced elastic energy storage compromises the ability of the aorta to augment antegrade and retrograde blood flow while an increased pulse wave velocity can adversely affect end organs, both conditions being characteristic of aortic aging in humans. In summary, MMP-12 is fundamental for establishing homeostatic values of biomechanical metrics in the aorta and its absence leads to a pre-aged aortic phenotype in young mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.