Abstract

GntR10 is a transcriptional regulator in Brucella. Nuclear factor-kappa B (NF-κB) is involved in many cellular activities, playing major roles in orchestrating the expression of inflammatory genes and regulating protein function that is essential for pathogenic bacteria during infection. GntR10 deletion was previously found to affect the growth and the virulence of Brucella and expression levels of target genes of GntR10 in mice. However, the mechanisms of affection of NF-κB regulated by Brucella GntR10 are still unclear. Here, GntR10 deletion could regulate the expression of LuxR-type transcriptional activators (VjbR and BlxR) of the quorum sensing system (QSS) and type IV secretion system (T4SS) effectors (BspE and BspF) of Brucella. It could further inhibit the activation of the regulator NF-κB and affect the virulence of Brucella. This research provides new insights into the designing of Brucella vaccines and the screening of drug targets. SignificanceTranscriptional regulators are predominant bacterial signal transduction factors. The pathogenicity of Brucella is due to its ability to regulate the expression of virulence related genes including quorum sensing system (QSS) and type IV secretion system (T4SS). Transcriptional regulators are designed to regulate gene expression and enact an appropriate adaptive physiological response. Here, we show that Brucella transcriptional regulator GntR10 regulated the expression of QSS and T4SS effectors, which affected the activation of NF-κB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.