Abstract

Intravenous injection of transforming growth factor (TGF-)-beta-treated antigen-presenting cells (APC) pulsed with antigen induces antigen-specific tolerance in both naive and previously primed mice. Although TGF-beta-treated APC-induced tolerance is associated with induction of regulatory T cells and impaired delayed-type hypersensitivity (DTH) responses, the specific mechanisms that mediate this tolerance are not currently known. The goal of the present report was to study the mechanisms involved in TGF-beta-treated APC-induced tolerance by determining the fate of the antigen-specific effector T cells that are regulated. Using a well-characterized system that allows tracking of small numbers of TCR transgenic T cells, we have found that antigen-specific T cell expansion, either in vivo or in vitro, is inhibited in mice that have been injected with TGF-beta-treated APC. The failure of antigen-specific effector T cells to expand did not appear to be due to the induction of anergy, since carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled cells divided normally in response to antigen and adjuvant in vivo, and addition of exogenous IL-2 was unable to restore T cell expansion in in vitro assays. Interestingly, the percentage of CFSE-labeled cells was decreased after >7-8 divisions following culture in vitro, which correlated with a significant increase in cell death. Cell death was prevented and the ability to expand in vitro was restored by treatment with anti-Fas ligand (FasL) antibody. In conclusion, tolerance induced by TGF-beta-treated APC appears to be associated with deletion of antigen-specific T cells involving the Fas-FasL pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.