Abstract
In this paper we provide an elementary proof of the existence of canard solutions for a class of singularly perturbed planar systems in which there occurs a transcritical bifurcation of the quasi steady states. The proof uses the one-dimensional result proved by V.F. Butuzov, N.N. Nefedov and K.R. Schneider, and an appropriate monotonicity assumption on the vector field. The result is applied to identify all possible predator–prey models with quadratic vector fields allowing for the existence of canard solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.