Abstract
Early cartilage changes in knee osteoarthritis (OA) can be assessed by both intravenous (i.v.) and intra-articular (i.a.) delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). To examine the relationship between i.a. dGEMRIC and delayed gadolinium-enhanced MRI of menisci (dGEMRIM), and to investigate if the approach can be used to assess the morphological degeneration of menisci in obese patients with knee OA. Cross-sectional. Eighty-five obese patients with knee OA. 1.5T. Inversion recovery sequence with four inversion times. T1 relaxation times were calculated for posterior weight-bearing femoral cartilage and the posterior horns of the menisci. Meniscus degeneration sum score (0-2) was assessed as increased signal/no signal (1/0) and tear/no tear (1/0). T1 relaxation times were compared using Student's t-test. Comparison of cartilage and meniscus T1 relaxation times was done by regression analysis. Analysis of variance (ANOVA) was used for comparison of meniscal T1 relaxation times among the three summed morphological scores (0-2). Statistical analyses were performed with a level of significance at 0.05. For lateral menisci, morphology sum scores of 0, 1, and 2 were found in 13, 58, and 14 patients and for medial menisci in 2, 30, and 30 patients, respectively. Mean T1 relaxation times were 441 msec, 480 msec, and 497 msec for cartilage, lateral menisci, and medial menisci, respectively. T1 relaxation times for the menisci were similar (P = 0.53), and a weak correlation was found between dGEMRIC and dGEMRIM in the lateral compartments (R = 0.26). Comparing dGEMRIM between different morphology sum scores showed no differences (P > 0.4). I.a. dGEMRIM showed no correlation between the degree of meniscal degeneration and meniscus T1 relaxation times. I.a. dGEMRIM do not seem to deliver useful information about meniscus degeneration to be suitable for clinical applications, but i.a. dGEMRIC may still be considered an alternative contrast-saving method for cartilage. 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;48:1700-1706.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.