Abstract

Hydrogen-induced delayed fracture at cold-blanked edges of 1–1.5 GPa ultra-high strength steel sheets was investigated. The blanked edges undergo large shear deformation and tensile residual stress, and thus the risk of delayed fracture is high, especially for the 1.5 GPa sheet. The effects of residual stress, surface quality and hardness of the sheared edge on the occurrence of delayed cracking were examined. Delayed cracking was caused by press blanking, whereas no cracking occurred for laser blanking because of compressive residual stress. For the 1.5 GPa sheet, delayed cracking was prevented by heating above 250 °C and a stain above 0.005.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.